Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of dicerium(III) tris(sulfate) tetrahydrate

Xin Xu

Heavy Oil Company, Liaohe Petroleum Filiale, China National Petroleum Corporation (CNPC), Shiyou Street No. 96, Panjin, 124010, People's Republic of China Correspondence e-mail: yanxchem@yahoo.com.cn

Received 14 October 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Ce–O) = 0.003 Å; R factor = 0.027; wR factor = 0.067; data-to-parameter ratio = 10.2.

 $Ce_2(SO_4)_3(H_2O)_4$ was obtained hydrothermally from an aqueous solution of cerium(III) oxide, trimethylamine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972). *Bull. Soc. Fr. Mineral. Cristallogr.* **95**, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

Related literature

For related literature, see: Doran *et al.* (2002); Li *et al.* (1998); Plévert *et al.* (2001); Shi (1987); Xu, Cheng & You (2006); Xu, Ding *et al.* (2006); Yuan *et al.* (2004); Zhang *et al.* (2004). For the previous structure determination, see: Dereigne (1972).

Experimental

Crystal data

 $\begin{array}{l} {\rm Ce}_2({\rm SO}_4)_3({\rm H}_2{\rm O})_4\\ M_r=640.48\\ {\rm Monoclinic},\ P2_1/n\\ a=13.1257\ (14)\ {\rm \AA}\\ b=7.2520\ (8)\ {\rm \AA}\\ c=13.3823\ (14)\ {\rm \AA}\\ \beta=92.5720\ (10)^\circ \end{array}$

Data collection

Bruker APEX2 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.437, T_{max} = 0.515$ (expected range = 0.394–0.466) $V = 1272.5 \text{ (2) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 7.65 \text{ mm}^{-1}$ T = 293 (2) K $0.13 \times 0.12 \times 0.10 \text{ mm}$

5923 measured reflections 2201 independent reflections 2071 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ Refinement

```
R[F^2 > 2\sigma(F^2)] = 0.027
wR(F^2) = 0.067
S = 1.09
2201 reflections
215 parameters
```

16 restraints Only H-atom coordinates refined $\Delta \rho_{max} = 1.12 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -2.16 \text{ e } \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ce1-O10	2.449 (2)	Ce2-O1 ⁱⁱⁱ	2.354 (3)
Ce1-O7	2.465 (3)	Ce2-O4 ^{iv}	2.430 (3)
Ce1-O12 ⁱ	2.476 (4)	Ce2-O5 ⁱⁱⁱ	2.470 (3)
Ce1-O11 ⁱⁱ	2.517 (3)	Ce2-O6 ^v	2.489 (3)
Ce1-O4W	2.524 (3)	Ce2-O3W	2.494 (3)
Ce1-O3	2.547 (3)	Ce2-O2W	2.497 (3)
Ce1-O3 ⁱ	2.621 (3)	Ce2-O9	2.529 (4)
Ce1-O1W	2.647 (3)	Ce2-O8	2.659 (3)
Ce1-O11	2.710 (3)		
O10-Ce1-O3	150.11 (9)	O3-Ce1-O11	53.24 (9)

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 2; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x, -y, -z + 2; (v) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The author is grateful to Dr Zhang for help with collecting the diffraction data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2049).

References

Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dereigne, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269-280.
- Doran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947.
- Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567–8568.

Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706–12707.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Shi, B. (1987). Jiegouhuaxue, 6, 70–72.
- Xu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705-7708.
- Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749– m1750.
- Yuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun. 7, 24-26.
- Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). *Inorg. Chem. Commun.* 7, 889–892.

Acta Cryst. (2008). E64, i1 [doi:10.1107/S1600536807062368]

Redetermination of dicerium(III) tris(sulfate) tetrahydrate

X. Xu

Comment

Over the past decades, the design and synthesis of new three–dimensional solid state materials have received great attention, due to their functional applications in catalysis and optical device. As the building elements germanium has been choosen to synthesize new porous materials (Li *et al.*, 1998; Plévert *et al.*, 2001; Xu, Cheng & You, 2006; Xu, Ding *et al.*, 2006). In the last few years, an important advance in three dimensional inorganic materials has been achieved by study of lanthanide sulfates frameworks (Zhang *et al.*, 2004; Yuan *et al.*, 2004; Xu, Ding *et al.*, 2006; Doran *et al.*, 2002). In this work, we synthesized the title compound, Cerium(3+) sulfate tetrahydrate, which features a three–dimensional framework. The structure of title compound had been reported previously (Dereigne *et al.*, 1972), however, the precision of redetermination is much improved.

As isostructure with $La_2(SO_4)_3(H_2O)_4$ and $Nd_2(SO_4)_3(H_2O)_4$ (Shi, 1987), the framework of title compound is constructed from CeO₉ and CeO₈ polyhedra and SO₄ tetrahedra. As shown in Fig. 1 and 2, the asymmetric unit contains two Ce³⁺, three SO₄²⁻ groups and four water molecules, all of which belong to the inorganic framework. The coordination about Ce1 and Ce2, respectively, is achieved by bridging oxygen atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands of Ce³⁺.

The Ce atom has the typical geometrical parameters, with Ce—O distances of 2.354 (3)– 2.710 (3)Å (Table 1). The O—Ce—O angles are between 59.28 (14) and 139.03 (14)°. These bond distances and bond angles are in agreement with those found in similar rare-earth compounds (Zhang *et al.*,2004; Yuan *et al.*, 2004). The geometry of the sulfate ions is unexceptional. Fig. 3 shows the three-dimensional arrangement in the unit cell, displaying the way the different CeO₉ polyhydra are connected by bridging sulfates.

Experimental

Colorless block-shaped crystals were synthesized hydrothermally from a mixture of CeCl₃·6H₂O, H₂SO₄ (98%), H₂O and trimethylamine(25%). All the chemicals are purchased from Shanghai Chemical Reagent Factory. In a typical synthesis, CeCl₃·6H₂O(0.2993 g) was dissolved in a mixture of trimethylamine (25%, 0.7893 g) and of water (1 ml) followed by the addition of H₂SO₄ (98%) (0.3528 g) with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at 180 °C for 6 days. The autoclave was slowly cooled to room temperature, and then the product was filtered, washed with distilled water, and dried at room temperature. Colorless block-shaped crystals of the title compound were obtained.

Refinement

The highest peak in the difference map is 1.12 e/Å^3 , and 1.26 (2) Å from Ce₂, while the minimum peak is -2.16 (2) Å from Ce₁. 5. The H atoms of water were located from different map, and the O—H distances are restrained to 0.85 (2) Å.

Figures

Fig. 1. The coordination of Ce1 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1.

Fig. 2. The coordination of Ce2 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1.

Fig. 3. The crystal packing in the unit cell of $Ce(SO_4)(OH)$.

dicerium(III) tris(sulfate) tetrahydrate

$F_{000} = 1200$
$D_{\rm x} = 3.343 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Cell parameters from 2201 reflections
$\theta = 2.1 - 25.0^{\circ}$
$\mu = 7.65 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.13 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker APEX2 CCD diffractometer	2201 independent reflections
Radiation source: fine-focus sealed tube	2071 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -12 \rightarrow 15$
$T_{\min} = 0.437, \ T_{\max} = 0.515$	$k = -8 \rightarrow 8$
5923 measured reflections	$l = -15 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	Only H-atom coordinates refined
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_o^2) + (0.0371P)^2 + 1.0649P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
2201 reflections	$\Delta \rho_{max} = 1.12 \text{ e} \text{ Å}^{-3}$
215 parameters	$\Delta \rho_{\rm min} = -2.16 \text{ e } \text{\AA}^{-3}$
16 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0953 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cel	0.413692 (17)	0.24066 (3)	0.964316 (18)	0.00669 (14)
Ce2	-0.073660 (17)	0.26197 (3)	0.849355 (18)	0.00793 (14)
S1	0.59971 (8)	0.26189 (10)	1.13380 (8)	0.0068 (2)

S2	0.13846 (6)	0.38957 (12)	0.95722 (7)	0.0088 (2)
S3	0.34712 (6)	-0.10740 (12)	1.15208 (7)	0.0077 (2)
01	0.3887 (2)	-0.0086 (4)	1.2394 (2)	0.0179 (6)
O2	0.7082 (2)	0.2370 (3)	1.1325 (3)	0.0164 (7)
O3	0.54510 (19)	0.0990 (3)	1.0873 (2)	0.0109 (6)
O4	0.2552 (2)	-0.2061 (4)	1.1792 (2)	0.0153 (6)
O5	0.5660 (2)	0.2917 (4)	1.2352 (2)	0.0152 (6)
O6	0.15247 (19)	0.4888 (4)	1.0522 (2)	0.0174 (6)
O7	0.32350 (19)	0.0207 (4)	1.0695 (2)	0.0137 (6)
08	0.07908 (19)	0.4978 (4)	0.8833 (2)	0.0134 (6)
09	0.0762 (3)	0.2206 (4)	0.9727 (3)	0.0158 (7)
O10	0.23802 (19)	0.3357 (4)	0.9218 (2)	0.0163 (6)
O11	0.5637 (2)	0.4210 (4)	1.0702 (2)	0.0121 (6)
O12	0.4231 (3)	-0.2449 (3)	1.1215 (3)	0.0134 (7)
O1W	0.3582 (2)	0.3879 (4)	1.1345 (2)	0.0181 (6)
H1WB	0.2964 (19)	0.371 (5)	1.152 (4)	0.027*
H1WA	0.381 (3)	0.497 (4)	1.138 (4)	0.027*
O2W	-0.13163 (19)	0.1354 (4)	1.0108 (2)	0.0155 (6)
H2WB	-0.185 (2)	0.179 (5)	1.037 (3)	0.023*
H2WA	-0.114 (3)	0.028 (4)	1.030 (3)	0.023*
O3W	-0.0481 (2)	-0.0777 (4)	0.8356 (2)	0.0218 (6)
H3WB	-0.049 (3)	-0.142 (4)	0.889 (2)	0.033*
H3WA	-0.005 (3)	-0.115 (4)	0.793 (3)	0.033*
O4W	0.3708 (3)	0.2180 (5)	0.7790 (3)	0.0245 (8)
H4WB	0.401 (3)	0.147 (6)	0.738 (3)	0.037*
H4WA	0.312 (2)	0.258 (6)	0.758 (4)	0.037*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cel	0.0052 (2)	0.00827 (18)	0.0066 (2)	0.00028 (6)	-0.00017 (12)	0.00084 (7)
Ce2	0.0056 (2)	0.00981 (18)	0.0083 (2)	0.00046 (6)	0.00028 (13)	0.00215 (7)
S1	0.0057 (5)	0.0090 (5)	0.0055 (5)	0.0001 (3)	-0.0013 (4)	0.0004 (3)
S2	0.0057 (4)	0.0099 (4)	0.0106 (5)	0.0002 (3)	-0.0002 (3)	-0.0003 (3)
S3	0.0062 (4)	0.0089 (4)	0.0082 (5)	-0.0012 (3)	0.0006 (3)	-0.0009 (3)
01	0.0210 (14)	0.0193 (14)	0.0134 (14)	-0.0032 (12)	-0.0009 (11)	-0.0063 (12)
O2	0.0081 (16)	0.0242 (17)	0.0169 (18)	0.0004 (10)	0.0000 (13)	-0.0027 (10)
O3	0.0113 (13)	0.0083 (13)	0.0129 (14)	-0.0018 (10)	-0.0022 (11)	0.0008 (11)
O4	0.0084 (14)	0.0212 (13)	0.0164 (15)	-0.0026 (12)	0.0005 (11)	0.0046 (13)
O5	0.0160 (16)	0.0219 (13)	0.0081 (15)	-0.0015 (12)	0.0039 (12)	-0.0029 (13)
O6	0.0148 (14)	0.0217 (14)	0.0153 (14)	0.0032 (11)	-0.0024 (11)	-0.0048 (12)
O7	0.0107 (13)	0.0149 (13)	0.0153 (14)	-0.0019 (11)	-0.0009 (10)	0.0014 (12)
O8	0.0129 (13)	0.0119 (13)	0.0153 (15)	0.0000 (10)	-0.0011 (10)	0.0032 (11)
O9	0.0163 (17)	0.0104 (13)	0.0205 (18)	-0.0026 (11)	-0.0022 (13)	0.0036 (12)
O10	0.0089 (13)	0.0241 (16)	0.0160 (15)	0.0029 (12)	-0.0005 (10)	-0.0028 (12)
O11	0.0167 (14)	0.0088 (13)	0.0104 (14)	-0.0014 (11)	-0.0024 (11)	0.0026 (11)
O12	0.0115 (17)	0.0143 (16)	0.015 (2)	0.0013 (9)	0.0053 (12)	0.0003 (10)
O1W	0.0126 (13)	0.0131 (14)	0.0290 (17)	-0.0034 (11)	0.0055 (12)	-0.0034 (12)

O2W	0.0139 (14)	0.0141 (13)	0.0190 (15)	0.0006 (11)	0.0049 (11)	0.0029 (12)
O3W	0.0349 (17)	0.0137 (14)	0.0172 (15)	0.0030 (12)	0.0059 (13)	0.0009 (12)
O4W	0.0221 (18)	0.0371 (17)	0.0137 (17)	0.0168 (14)	-0.0068 (14)	-0.0093 (14)
C						
Geometric p	arameters (A, °)					
Ce1—010		2.449 (2)	S1—	02	1.43	7 (3)
Cel—07		2.465 (3)	SI—	05	1.46	2 (3)
Ce1—012 ¹		2.4/6 (4)	SI		1.49	8 (3)
Cel—Oll ^{II}		2.517 (3)	S1—	03	1.50	2 (3)
Cel = 04W		2.524 (3)	S2	08	1.46 1.46	0(3)
		2.347(3)	S2—	010	1.40	5 (3)
Ce1 = 0.01W		2.621(3)	\$2	00	1.40	(3)
Ce1—011		2.710(3)	83—	01	1.45	i6 (3)
Ce1—S1		3.2607 (11)	S3—	04	1.46	53 (3)
Ce2—O1 ⁱⁱⁱ		2.354 (3)	S3—	07	1.46	6 (3)
Ce2—O4 ^{iv}		2.430 (3)	S3—	012	1.48	31 (3)
Ce2—O5 ⁱⁱⁱ		2.470 (3)	01—	-Ce2 ^{vi}	2.35	4(3)
Ce2—O6 ^v		2.489 (3)	O3—	-Ce1 ⁱ	2.62	21 (3)
Ce2—O3W		2.494 (3)	O4—	-Ce2 ^{iv}	2.43	0 (3)
Ce2—O2W		2.497 (3)	05—	-Ce2 ^{vi}	2.47	/0 (3)
Ce2—O9		2.529 (4)	O6—	-Ce2 ^v	2.48	89 (3)
Ce2—O8		2.659 (3)	O11-	–Cel ⁱⁱ	2.51	7 (3)
Ce2—S2		3.2143 (9)	012-	-Cel ⁱ	2.47	6 (4)
O10-Ce1-	07	80.99 (9)	O4 ^{iv} -	Ce2O9	144.	.23 (11)
O10-Ce1-	012 ⁱ	135.57 (11)	O5 ⁱⁱⁱ -	Ce2O9	78.9	93 (11)
07—Ce1—0	12 ⁱ	136.10 (8)	O6 ^v -	-Ce2O9	94.0	03 (10)
O10-Ce1-	O11 ⁱⁱ	78.49 (9)	O3W	—Ce2—O9	80.0	07 (9)
07—Ce1—0	11 ⁱⁱ	143.04 (9)	O2W	—Ce2—O9	69.5	51 (10)
O12 ⁱ —Ce1—	O11 ⁱⁱ	77.96 (8)	O1 ⁱⁱⁱ -	Ce2O8	75.7	(9)
O10-Ce1-	O4W	67.91 (10)	O4 ^{iv} -	Ce2O8	149.	.39 (9)
07—Ce1—0	4W	115.31 (11)	O5 ⁱⁱⁱ -	Ce2O8	68.4	3 (9)
O12 ⁱ —Ce1—	O4W	72.81 (13)	O6 ^v -	-Ce2O8	76.7	73 (8)
O11 ⁱⁱ —Ce1—	-O4W	84.61 (10)	O3W	—Ce2—O8	123.	.02 (9)
O10-Ce1-	03	150.11 (9)	O2W	—Ce2—O8	110.	19 (8)
07—Ce1—0	3	72.45 (8)	09—	-Ce2—O8	53.5	57 (8)
O12 ⁱ —Ce1—	-03	74.32 (10)	O1 ⁱⁱⁱ -	Ce2S2	102.	.43 (7)
O11 ⁱⁱ —Ce1—	-O3	115.47 (8)	O4 ^{iv} -	-Ce2-S2	160.	.40 (8)
O4W—Ce1—	-03	136.36 (9)	O5 ⁱⁱⁱ -	Ce2S2	70.8	31 (7)
O10-Ce1-0	O3 ⁱ	113.98 (9)	O6 ^v -	Ce2S2	85.7	2 (6)
07—Ce1—0	3 ⁱ	69.68 (8)	O3W	Ce2—S2	101.	.58 (7)
O12 ⁱ —Ce1—	·O3 ⁱ	72.32 (8)	O2W	—Ce2—S2	90.5	60 (6)

O11 ⁱⁱ —Ce1—O3 ⁱ	147.19 (9)	09—Ce2—S2	26.89 (7)
O4W—Ce1—O3 ⁱ	73.70 (9)	O8—Ce2—S2	26.70 (6)
O3—Ce1—O3 ⁱ	69.49 (9)	O2—S1—O5	111.78 (19)
O10—Ce1—O1W	78.08 (9)	O2—S1—O11	112.17 (17)
O7—Ce1—O1W	67.17 (8)	O5—S1—O11	108.23 (17)
O12 ⁱ —Ce1—O1W	132.17 (10)	O2—S1—O3	110.58 (15)
O11 ⁱⁱ —Ce1—O1W	78.67 (9)	O5—S1—O3	109.98 (17)
O4W—Ce1—O1W	144.47 (9)	O11—S1—O3	103.78 (17)
O3—Ce1—O1W	79.12 (8)	O2—S1—Ce1	134.25 (15)
O3 ⁱ —Ce1—O1W	132.38 (8)	O5—S1—Ce1	113.83 (13)
O10-Ce1-O11	129.81 (9)	O11—S1—Ce1	55.52 (11)
O7—Ce1—O11	111.72 (8)	O3—S1—Ce1	49.18 (10)
012 ⁱ —Ce1—O11	67.22 (10)	O8—S2—O10	112.44 (16)
O11 ⁱⁱ —Ce1—O11	62.40 (10)	O8—S2—O6	111.47 (16)
O4W—Ce1—O11	132.05 (10)	O10—S2—O6	109.46 (15)
O3—Ce1—O11	53.24 (9)	O8—S2—O9	104.86 (17)
O3 ⁱ —Ce1—O11	115.95 (7)	O10—S2—O9	109.15 (18)
O1W—Ce1—O11	65.00 (8)	O6—S2—O9	109.32 (19)
O10—Ce1—S1	144.70 (7)	O8—S2—Ce2	54.92 (10)
O7—Ce1—S1	89.84 (6)	O10—S2—Ce2	123.08 (11)
O12 ⁱ —Ce1—S1	71.67 (9)	O6—S2—Ce2	127.12 (11)
O11 ⁱⁱ —Ce1—S1	89.48 (6)	O9—S2—Ce2	50.02 (13)
O4W—Ce1—S1	144.45 (8)	O1—S3—O4	108.98 (17)
O3—Ce1—S1	26.51 (6)	O1—S3—O7	110.62 (16)
O3 ⁱ —Ce1—S1	94.06 (6)	O4—S3—O7	110.38 (16)
O1W—Ce1—S1	66.99 (6)	O1—S3—O12	108.69 (18)
O11—Ce1—S1	27.09 (6)	O4—S3—O12	108.21 (17)
O1 ⁱⁱⁱ —Ce2—O4 ^{iv}	81.47 (10)	07—83—012	109.91 (19)
O1 ⁱⁱⁱ —Ce2—O5 ⁱⁱⁱ	82.75 (10)	S3—O1—Ce2 ^{vi}	159.40 (18)
O4 ^{iv} —Ce2—O5 ⁱⁱⁱ	128.77 (10)	S1—O3—Ce1	104.31 (13)
O1 ⁱⁱⁱ —Ce2—O6 ^v	72.44 (10)	S1—O3—Ce1 ⁱ	138.41 (14)
O4 ^{iv} —Ce2—O6 ^v	77.08 (10)	Ce1—O3—Ce1 ⁱ	110.51 (9)
$O5^{iii}$ —Ce2—O6 ^v	141.23 (10)	S3—O4—Ce2 ^{iv}	148.94 (18)
O1 ⁱⁱⁱ —Ce2—O3W	136.83 (10)	S1—O5—Ce2 ^{vi}	144.59 (18)
O4 ^{iv} —Ce2—O3W	87.59 (10)	S2—O6—Ce2 ^v	140.98 (15)
O5 ⁱⁱⁱ —Ce2—O3W	72.09 (10)	S3—O7—Ce1	138.57 (15)
O6 ^v —Ce2—O3W	144.78 (10)	S2—O8—Ce2	98.38 (13)
O1 ⁱⁱⁱ —Ce2—O2W	139.13 (9)	S2—O9—Ce2	103.09 (16)
O4 ^{iv} —Ce2—O2W	74.93 (9)	S2	147.70 (16)
O5 ⁱⁱⁱ —Ce2—O2W	137.81 (9)	S1—O11—Ce1 ⁱⁱ	144.95 (16)
O6 ^v —Ce2—O2W	70.06 (9)	S1-011-Ce1	97.39 (12)
O3W—Ce2—O2W	75.42 (9)	Cel ⁱⁱ —O11—Cel	117.60 (10)
01 ⁱⁱⁱ —Ce2—O9	129.31 (9)	S3—O12—Ce1 ⁱ	136.67 (15)

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x, -y, -z+2; (v) -x, -y+1, -z+2; (vi) x+1/2, -y+1/2, z+1/2.

